
DSI: Automated Detection of Dynamic Data
Structures in C Programs and Binary Code∗

Thomas Rupprecht, Jan H. Boockmann, David H. White and Gerald Lüttgen

Software Technologies Research Group, University of Bamberg, 96045 Germany

Abstract. Program comprehension is an important task for software
engineers who maintain legacy code, as well as for reverse engineers who
analyse binary executables such as malware. Detecting dynamic, i.e.,
pointer-based data structures is a particular challenge due to the complex
usage of pointers found in real world software.
This paper presents the key results of the DFG-funded project “Learning
Data Structure Behaviour from Executions of Pointer Programs” (DSI),
in which dynamic analysis techniques have been developed to identify dy-
namic data structures in C programs and x86 binary code. DSI’s analysis
utilizes a novel memory abstraction that allows for a compact descrip-
tion of pointer-based data structures such as linked lists and binary trees,
and their interconnections such as parent-child nesting. On top of this ab-
straction, an evidence-collecting approach calculates a natural language
description of the observed data structure with the help of a systematic
taxonomy. The inferred data structure information is not only helpful for
program comprehension but also for other use cases including software
verification and software visualization.

1 Introduction

This paper summarizes the key results of the DFG-funded project DSI (LU 1748/
4-1), whose main goal was to develop novel techniques for identifying dynamic
data structures in pointer software. Details can be found in [23, 24, 27, 28] and
on the DSI webpage located at http://www.swt-bamberg.de/dsi.

Motivation. Many software developers are faced with legacy code, or sophis-
ticated program constructs employed in low-level code. In addition, programs
often rely on dynamic, i.e., pointer-based data structures involving linked lists
and trees. Therefore, developers desire advanced support for program compre-
hension, which is even more true when only a binary version of a program is
available, e.g., when analysing the vastly growing amount of malware [3]. To
partially alleviate this obstacle, we propose Data Structure Investigator (DSI),
a novel dynamic analysis for the automatic identification of dynamic data struc-
tures. DSI detects (cyclic) singly and doubly linked lists and binary trees, as

∗ This research is supported by the German Research Foundation (DFG) under project
title “Learning Data Structure Behaviour from Executions of Pointer Programs”
(grant no. LU 1748/4-1).



well as other data structures, such as skip lists, that are not handled by related
work [8,14,17]. Additionally, DSI allows for arbitrary parent-child nesting com-
binations of such data structures, which is also out-of-scope of [8, 12, 14, 15, 17].
DSI’s analysis information can be used in various ways, such as for inferring
a natural language description of an observed data structure (e.g., “a doubly
linked list with nested singly linked lists”), for generating verification conditions
for verification tools such as VeriFast [16], and for enabling advanced visualiza-
tions of pointer programs.

State-of-the-art. Prominent examples of dynamic analysis tools for detecting
dynamic data structures are ARTISTE [8], DDT [17], and MemPick [14]. These
operate on binaries only and instrument the binaries to extract runtime infor-
mation. DSI also uses instrumentation to record memory events, but operates on
both source code and binary code. One of the biggest challenges when identifying
data structures comes with data structure operations as they tend to temporar-
ily break a data structure’s shape; consider, e.g., the rewriting of pointers during
a doubly-linked list insertion operation. We term the true shape of a data struc-
ture a stable shape and the temporarily broken shape a degenerate shape. Both
DDT and MemPick avoid degenerate shapes: DDT performs its analysis on op-
eration boundaries and thus requires their accurate detection, while MemPick
employs a heuristic to determine quiescent periods during which no changes to
the data structure are made. While DSI also analyses degenerate shapes, it uses
an evidence-collecting approach so as not to loose overall precision. ARTISTE
does not explicitly avoid degenerate shapes, too, but it becomes more conserva-
tive with its analysis when it encounters them. Additionally, ARTISTE, DDT,
and MemPick have the common assumption that one node of a data structure
occupies an allocated chunk of memory as a whole. Instead, DSI has a finer
grained heap abstraction, which allows it to seamlessly deal with advanced and
low-level constructs such as employed, e.g., by the Linux kernel list [2].

Complementary to dynamic analysis tools are static shape analysis tools such
as Predator [12] and Forester [15], which operate on source code. They also in-
fer the shape of a data structure but focus on program verification rather than
program comprehension. Other related work are visualization tools that gen-
erate a compact view of the heap to ease understanding, e.g., Heapviz [5] and
HeapDbg [19]. Both operate on heap snapshots as opposed to DSI’s dynamic
analysis that observes how data structures evolve over time. Heapviz processes
Java-based heap snapshots that provide rich information about objects, their
types, and their interconnections. It uses the extracted type information from the
heap as is, which can result in less precise data structure naming, as can be seen
in an example in [5], where a doubly linked list (DLL) is labeled as LinkedList.
Instead, DSI infers shapes without relying on preexisting data structure infor-
mation, and will correctly report a DLL in the mentioned example. HeapDbg is
similar to Heapviz but infers shapes by inspecting the interconnections between
objects; for example, it classifies objects with a left pointer and a right pointer
as a tree. In addition, HeapDbg does not support as many data structures as
DSI does, such as skip lists and various parent-child relations.



Contributions. DSI contributes to the state-of-the-art of program comprehension
and reverse engineering with a novel approach for identifying dynamic data
structures in both source code and binaries. Its dynamic analysis is based on
a fine-grained memory abstraction that consists of singly linked lists and their
interconnections (such as nesting), where list nodes can cover sub-regions of
memory. The detectable data structures are summarized in a taxonomy and
reach from (cyclic) singly and doubly linked lists to skip lists to trees. At the
heart of DSI is an evidence-collecting algorithm called DSIcore (see Sec. 3),
which considers the structural complexity of an observed data structure shape as
evidence measure, and reinforces evidence by exploiting structural and temporal
repetition to discriminate against degenerate shapes.

Two concrete realizations of DSI have been developed as front ends to DSI-
core: (i) DSIsrc supports the analysis of C source code (see Sec. 4), and (ii) DSI-
bin supports x86 binaries (see Sec. 5). One of the fundamental differences be-
tween DSIsrc and DSIbin is the availability of type information in source code
but not in (stripped) binaries. This is mitigated in DSIbin by first using the
state-of-the-art type excavator Howard [25] to recover (partial) low-level type
information, and subsequently refining the types via a new approach termed
DSIref, which employs DSIcore to assist in the inference of low-level types via
high-level data structure information (see Sec. 5).

Extensive benchmarking using example programs from the literature and
real-world programs demonstrated that DSI identifies dynamic data structures
correctly and robustly. Due to the generality of DSIcore’s memory abstraction
and in contrast to related work, DSI provides rich descriptions of data structures
over a variety of implementation techniques that commonly occur in pointer
programs. Three back ends to DSIcore have also been prototyped within the DSI
project and testify to DSI’s applicability in various domains, namely program
verification, data structure visualization, and operation detection (see Sec. 6).

2 DSI Tool Suite

Fig. 1 depicts DSI’s architecture: our front-end components DSIsrc and DSI-
bin, the DSIcore component and various back-end components. Both front ends
collect runtime information via a dynamic analysis, which is accomplished by in-
strumenting C source code via the CIL framework [21] and binaries via Intel’s Pin
framework [18]. Executing an instrumented program results in an execution trace
that records relevant heap and stack events such as memory (de-)allocations and
pointer writes. The trace is passed to DSIcore for offline analysis. DSIbin uses
Howard [25] for recovering type information from binaries and our additional
type refinement component DSIref. DSI’s back ends consume the information
produced by DSIcore and comprise the naming module for giving a natural lan-
guage description for an identified data structure, the operation detection com-
ponent for localizing data structure operations, the visualization component for
presenting the data structure consistently over its lifetime, and the verification
component for interfacing to the program verifier VeriFast [16] (see Sec. 6).



DSIbin

Offline analysisFront ends

DSIcore

DSIsrc

C 
source
file

x86 
binary
file

Howard DSIref

Visualization

Naming

Verification

Operation
detection

Back ends

Fig. 1. Overview of the DSI tool chain. (Figure adapted from [23].)

3 DSIcore: DSI’s Core Algorithm

This section overviews our general DSI approach implemented by DSIcore, using
the illustrative example of Fig. 2. The example shows two time steps t and t+ 1
in the construction of a singly linked list (SLL) of doubly liked lists (DLLs), with
entry pointer ep. Note that there exists a degenerate DLL child at time step t,
and how the pipelined nature of the approach becomes apparent. The pipeline
starts by constructing a sequence of points-to graphs that model the heap at
each time step, where a points-to graph represents allocated memory chunks as
vertices and pointers as edges (see Fig. 2(a)).

Memory abstraction. DSI relaxes the common assumption that data structure
nodes occupy an allocated memory chunk as a whole [8, 14, 17]. Instead, our
approach allows nodes to cover sub-regions of memory, termed cells. Sequences
of cells that have the same linkage condition, i.e., all pointers originate at the
same linkage offset relative to the cell’s start address, and that point to the
start address of the following cell are called strands. Strands are the basic data
structure building blocks considered by DSI and highlighted in Fig. 2(a) by
the thick coloured arrows that traverse through nodes and that are labeled S1

to S6. To infer a data structure shape, the relationships between strands need
to be identified, which we term strand connections (SCs). A strand connection
describes exactly one way in which multiple cells of a strand are related. It
aggregates all cell pairs of two strands that have the exact same relation; thus, a
strand connection consists of a set of cell pairs. Observe that two strands can be
related in more than one way, resulting in multiple strand connections between
the strands. We construct a strand graph, where vertices represent strands and
edges represent strand connections (see Fig. 2(b)). The strand connections with
the same edge style denote the same relationship type; for example, the DLL



strands form a tight strand connection that is bi-directional, e.g., S3 can be
reached from S2 and vice-versa. Two kinds of loose and uni-directional strand
connections are formed between the parent SLL and each child DLL; for example,
S1 cannot be reached from S2.

ep SLL

SLL SLL

ep ep

E(DLL)=6

E(NI)=1ep

E(I2+O)=2 E(DLL)=6 E(DLL)=9

ep

E(NI)=2 E(NI)=2

E(DLL)=6, E(IL2+O)=2

ep

E(DLL)=15

ep

ep

SLL

DLL

ep
SLL with 
Nested 
DLLs

ep

Time t Time t+1

(c)

Folded

Strand

Graphs

(d)
Aggregate

Strand

Graph

(a)

Points-to
Graphs

(b)
Strand

Graphs

(e) (f) (g)

M
em

ory
 A

b
straction

&
 E

v
id

en
ce D

isco
v
ery

S
tru

ctu
ral

R
ep

etition
T

em
p
oral

R
ep

etition
D

ata S
tru

ctu
re

N
am

in
g

E(NI)=1

E(NI)=2 E(NI)=2

E(DLL)=21, E(IL2+O)=2

E(NI)=4 E(NI)=4

NI NI
NI NI

DLL

Pipeline

Fig. 2. Left: DSI’s pipeline; right: the example of Sec. 3. (Figure adopted from [28].)



In the following, data structures and their interconnections are consolidated
under the term memory structure. A memory structure observation is made on
the strand graph by matching (parts of) the graph against a set of shape pred-
icates. For example, our DLL predicate requires exactly two strands running
in opposite directions and connected by a tight strand connection. The predi-
cates available to DSIcore are defined by our data structure taxonomy presented
in [28], which also describes the precedence rules on predicates when matching
data structures; these are needed to avoid ambiguities and not inadvertently
interpret, e.g., a binary tree as parent-child nesting of SLLs.

Evidence collection. Each memory structure observed in a strand graph is asso-
ciated with a corresponding memory structure label and an evidence count E.
The evidence is recorded on the strand connections that are matched by the
shape predicate. The evidence count is derived from the structural complexity
of the memory structure on the basis of the number of cell pairs comprising the
strand connection and the way in which these are accessed by the shape predi-
cate. Evidence weights for our example, are shown in Fig. 2(b). The degenerate
DLL in time step t has an evidence count of 2 for “intersecting on two nodes
overlay” (I2+O), where the number of connections between the two strands is
required to be at least two and the count is simply the number of cell pairs in the
connection. The regained stable DLL shape at t + 1 is matched by a predicate
checking that the forward/reverse property of the DLL holds for each cell pair
in the strand connection. This results in a count of 3 for each cell pair: 1 for
the existence of the cell pair, plus 2 because both cells in the cell pair must be
analysed. As three cell pairs exist, the total evidence count is 3 ∗ 3 = 9. Nesting
(NI) only requires the existence of one cell pair connecting the parent strand to
the child; hence, each occurrence has a count of 1. This evidence is spread over
each strand connection that participates in the parent-child nesting and is then
accumulated via structural and temporal repetition:

– Regarding structural repetition, DSI detects and groups those elements of
the strand graph that perform the same role within one time step. Consider,
e.g., the forward strands {S2, S4} and backward strands {S3, S5} of the DLL
children at time t in Fig. 2. The grouping is done via a merge algorithm that
produces a folded strand graph (see Fig. 2(c)). The folding results in vertices
that now consist of strand sets and merged strand connections, where all
evidence counts are summed up. The aggregation of the strand connections
reinforces the evidence and is part of our solution to rule out degenerate
shapes during data structure operations, as those parts of the data structure
that are in stable shape can be aggregated with others that are in degenerate
shape. In practice, the degenerate shape is in the minority, such that the
majority of stable shapes overrides the minority.

– To track the temporal behavior of a memory structure and enable the iden-
tification of temporal repetition, it must be determined which strands rep-
resent the same data structure building block over multiple time steps. We
tackle this problem by considering the labeling from the point of view of



ep

(a) (b) (c)

nodenode

node node ...

node node ...

ep

ep
node

node

node

node

node

Fig. 3. Complications of C heaps: (a) custom allocator, (b) cache efficient list [7],
(c) Linux kernel cyclic DLL [2]; ep denotes an entry pointer. (Figure adopted from [28].)

each entry pointer to a data structure separately, because entry pointers
are inherently stable over their lifetimes. For each entry pointer and each
time step in which an entry pointer exists, temporal repetition is performed
by extracting the folded strand graph’s subgraph reachable from the entry
pointer. All extracted subgraphs are then merged over the lifetime of the
entry pointer, resulting in an aggregate strand graph, in which the identified
evidences are again accumulated. This is the second part of the evidence
reinforcement to rule out degenerate shapes. The vertices of the aggregate
strand graph are abstract representations of the strands in terms of their
linkage conditions (SLC).

Our example’s aggregate strand graph is shown in Fig. 2(d), where the evidence
for DLL is overwhelming. At the end of an entry pointer’s lifetime, we interpret
DSI’s analysis by choosing the label with the highest evidence for each strand
connection and label each strand as SLL or cyclic SLL (CSLL) (see Fig. 2(e)).

Naming of data structures. While the aggregate strand graph is useful for pro-
gram comprehension, a natural language annotation of the program’s source code
at an entry pointer declaration, which names the data structure to which the
entry pointer points, can be preferable. Of course, this assumes that the source
code is available. Our according naming component iteratively groups the ver-
tices of the aggregate strand graph and assigns a textual label to the resulting
group; these grouped elements now form an atomic vertex in subsequent group-
ings. For example in Fig. 2(f), the result of grouping the two vertices connected
by a DLL strand connection is shown. The order in which vertices are grouped
must be carefully chosen so that the most suitable naming is generated; see [28]
for details. Ultimately, we end up for our example with the graph in Fig. 2(g).

4 DSIsrc: DSI Front End for Analysing C Source Code

DSIsrc instruments the source code using the CIL framework [21], inserting
instructions for recording pointer writes and memory (de-)allocations both on
the heap and the stack. Subsequently, the instrumented source code is compiled



Child DLL2revChild DLL1rev Child DLL2fwdChild DLL1fwd

I1O: 2720

I1O: 2720 I1O: 2717I1O: 2717

Parent DLLfwd Parent DLLrev

CDLL: 126963,
I2+O: 313

CDLL: 24291,
I2+O: 24

I1O: 742
NO: 1978, 

I1O: 742
NO: 3946, 

I1O: 742
NO: 3943, I1O: 742

NO: 1975, 

DLL: 21789, I2+O: 15

I1O: 742
NO: 3942, 

I1O: 742
NO: 1974, 

I1O: 742
NO: 1977, I1O: 742

NO: 3945, 

Fig. 4. Aggregate strand graph for libusb. (Figure adopted from [28].)

and executed to capture the programs event trace that is then analysed by
DSIcore. The following paragraphs are adapted from [28], where a more detailed
description of DSIsrc can be found.

The C heap. The reason for choosing C as a concrete realization for DSI is that
it is far less restrictive regarding heap manipulations than other programming
languages such as C# or Java. This results in programs that utilize the free-
dom of pointer arithmetic, type casts, macro usage, and (customized) memory
allocations, and that are quite often favoring performance over source code read-
ability. Together with C’s widespread use in operating systems code and in Unix
systems, the amount of difficult-to-comprehend legacy code is overwhelming,
making DSI’s capabilities a desirable feature for software developers.

A common assumption of related work is that one node of a data structure
corresponds to one allocated chunk of memory. This assumption breaks in case
multiple nodes of a data structure are placed inside a memory chunk, which is of-
ten the case with (i) custom memory allocators (see Fig. 3(a)), (ii) cache-efficient
data structures [7] (see Fig. 3(b)), and (iii) head nodes of multiple lists embed-
ded in the same memory chunk (see Fig. 3(c)). The latter is common practice in
the cyclic Linux kernel list [2], which embeds the linkage struct list head inside
another struct. To model these situations, it is mandatory to allow nodes to only
cover some sub-region of memory and permit that the linkage offsets are always
from the start of the enclosing sub-region instead of, as is done in [14,17,19], the
start of the enclosing memory chunk. DSI explicitly supports such heap states,
which are typical for low-level C programs, with its cell-based strand abstraction.

Example. libusb [1] is one of the most challenging examples from the DSI bench-
mark [28]. This benchmark comprises textbook examples, self-written synthetic
examples, Forester/Predator examples [4], and the real-world programs bash and
libusb. The latter is a user space usb library, which comprises almost 7k lines



of C code. We exercised this code using the included utility listdevs, modified
to expose several struct libusb contexts. The main data structure of libusb
forms a parent CDLL, where both child elements for the parent form a CDLL:
one for devices and one for associated file descriptors. DSI’s output, as depicted
in Fig. 4, clearly indicates this structure. Note that the CDLLs are Linux CDLLs
that are embedded in structs, thus requiring our cell abstraction to understand
the cyclic nature of the lists.

5 DSIbin: DSI Front End for Analysing x86 Binaries

DSIbin opens up our DSI approach to x86 binaries. The challenge here is not
the binary format itself but the absence of any type information that is needed
by DSIcore for detecting and tracking cells and strands.

Front end. To provide DSIcore with the required information when inspecting
binaries, we utilize Intel’s Pin framework [18] for capturing, as before, pointer
writes and memory (de-)allocations. DSIcore demands low-level type informa-
tion including types of (nested) structs both on the heap and stack, which is
unavailable from stripped binaries. Therefore, DSIbin relies on the type exca-
vator Howard [25] to recover this information. One fundamental problem when
inferring types is to identify whether some types are the same. This happens
in case one type is allocated at different locations within the binary. Because
no explicit information is present in the binary that indicates type equivalence,
this needs to be inferred separately. We modified Howard mildly to perform type
merging between identified structs by tracking whether instructions and pointers
touch binary compatible memory chunks from different allocation sites, which
then get merged. However, some situations are not covered; for example, Howard
does not merge nested types and misses nested structs when the access pattern
is ambiguous, e.g., when a nested struct is placed at the head of the surrounding
struct. To overcome these limitations, we devised the type refinement component
DSIref.

DSIref: Refinement of type information. DSIref uses Howard’s inferred types as
starting point. Pointer connections reveal information about the data structure
layout; for example, an incoming pointer to the middle of a data structure might
indicate a nested struct or a linkage between two objects of different types.
Struct types as reported by Howard could be merged when they are binary
compatible, i.e., they have the same size and fields of the same primitive data
types. Because pointer connections can be ambiguous, we create a set of possible
type interpretations and then select the most plausible one. The latter is done
by evaluating each interpretation with DSI and choosing the structurally most
complex data structure as the most plausible interpretation. The intuition is
that correct type merges and nested type detections naturally reveal the most
‘complex’ data structure. For example, when considering Fig. 6, the cyclicity of
the lists can only be detected when the grey nodes are correctly identified.



Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

(a) (b) (c)

(e) (f)(d)

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

(h)(g)

Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

&

2x SLL 1x CSLL & 1x SLL 1x CSLL & 1x SLL 

Next*

Next*

Payload*

Payload*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Payload*

Next* Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*
& ...

Payload*

Next*

Payload*

Next*

Next*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Payload*

Next*

Payload*

Fig. 5. Overview of the DSIref approach: (a) create sequence of points-to-graphs from
program execution (only one shown); (b) construct merged type graph capturing
pointer connections between types; (c) exploit pointer connections by mapping type
sub-regions (two possibilities shown); (d) observe that multiple interpretations may
be possible; (e) propagate each interpretation along pointer connections; (f) rule out
inconsistencies; (g) evaluate remaining interpretations via DSI; (h) choose the ‘best’
interpretation in terms of data structure complexity (indicated by merged type graph
with resulting label 1x CSLL & 1x SLL). (Figure adopted from [23].)

The refinement process involves eight phases (Phases (a)–(h)), see Fig. 5. In
Phase (a), DSIref takes all the ‘as is’ type information from Howard. In Phase (b),
DSIref constructs a merged type graph similar to [5, 8, 22], where types are ver-
tices and pointers are edges. Each type occurs only once, which reflects the
connections between all types that occur in the execution trace under analy-
sis. Notably, heap and stack allocated types are transparent to the merged type
graph. This allows us to merge both, something that is not considered in related
work [9]. Phases (c)–(f) utilize the merged type graph in order to generate new
possible type interpretations. The first of these phases maps binary compati-
ble sub-regions between different types by following pointer connections. Such
mappings might be ambiguous as can be seen by the three possible mappings
in Phase (d). Consequently, each of the mappings results in one type interpre-
tation. In Phase (e), these types are then propagated along pointer chains as
long as binary compatibility allows further propagation. This merges arbitrary
combinations of (nested) struct types distributed over the heap and stack. Note
that type interpretations can be conflicting as shown in Phase (f), where two
interpretations are overlapping. These conflicts are eliminated as nested structs
cannot overlap. All remaining interpretations and also Howard’s initially inferred
interpretation are evaluated with DSI, and the structurally most complex data



nodenodenode

nodenodenode

node node head
node

nodenodenode

nodenodenode

Fig. 6. CDLL parent with two CDLL children per parent node [4].

structure interpretation is selected. This is shown in Phase (h), where the cyclic
SLL is chosen over the non-cyclic SLL interpretation.

Example. One challenging example from our benchmark for DSIbin [23] is taken
from the literature [4] and happens to have the same dynamic data structure
as libusb (see Fig. 4). A points-to graph of this example is shown in Fig. 6,
where the parent CDLL is located at the top. It consists of two payload nodes,
both having two nested CDLL children, and the external head node of the list.
The nodes highlighted in grey are required to detect the correct shape of the
data structure and are subject to the refinement performed by DSIref. Without
DSIref, the parent nested structs and the external head struct are not detected
to be of the same type, which results in missing the cyclic property of the DLL,
i.e., the external head is cut off. The same is true for the grey head nodes of the
child elements, with the addition that the overlay nesting is missed and only a
“nesting on indirection” is reported. Therefore, without the refinement, a “DLL
with two indirect nested DLL children” is detected. When employing DSIref,
the grey nodes are also typed correctly, resulting in the identification of the data
structure’s true shape, i.e., a “CDLL with two overlay nested CDLL children.”

6 DSI’s Back Ends

The artefacts generated by DSIcore can be passed to various back-end compo-
nents (see Fig. 1). Within the DSI project, we have developed early prototypes
for operation detection, formal verification, and visualization. The operation de-
tection component observes repetitive changes in data structures that occur due
to insertion and deletion operations. The repetitive behaviour is identified via a
multi-dimensional pattern matching approach driven by a genetic algorithm [11].

Detecting data structure operations is key for an important use case of DSI,
namely the automated generation of source code annotations for formal pro-
gram verification, such as pre-and post-conditions. The intention is to free a
verification engineer from the burden of providing the often rather straightfor-
ward annotations that relate to (preserving) data structure shape. The utility



Fig. 7. Visualization of the transition of a DLL from a degenerate shape (left) to a
stable shape (right). (Figure adopted from [26].)

of this DSI use case had already been demonstrated by interfacing DSI’s prede-
cessor tool dsOli [27] to the verification tool VeriFast [20], and DSI’s verification
component has been prototyped in [6].

Our third prototypical back end implements an advanced visualization ap-
proach [26] that uses the data structure information inferred by DSIcore to
consistently display a data structure over its lifetime. This allows for a stepwise
inspection even during periods of degenerate shapes, where our layout algorithm
still arranges the data structure according to the final data structure interpreta-
tion. This is in contrast to, e.g., the dot renderer of Graphviz [13] which might
rearrange the graph from one time step to the next. An example of adequately
visualizing a DLL during an insertion operation is shown in Fig. 7, where grey
nodes represent the entry pointers into the DLL. Observe that all DLL nodes,
i.e., the nodes 5, 9, 11, and 13, are displayed consistently across both time steps.

7 Conclusions

We provided an overview of the novel DSI approach for reliably identifying dy-
namic data structures in pointer programs, which we envisage to be a signif-
icant help when comprehending C source code or reverse engineering binaries
of pointer programs. The data structures in scope for DSI contain list-based
structures such as (cyclic) singly and doubly linked lists (with head and/or tail
pointers), binary trees, skip lists, and more complex data structures that are
build from the mentioned ones via indirect and overlay nesting.

DSI advances over related work in terms of accuracy and data structure vari-
ety have been enabled by DSIcore’s fine-grained memory abstraction in terms of
cells, strands, and strand connections, and by DSI’s evidence-collecting approach
to data structure identification. In addition, we compensated the loss of type in-
formation in binaries via a novel combination of the type excavator Howard with
DSIcore, whereby the high-level data structure information obtained by DSIcore



is employed to infer low-level type information such as nested struct types. We
refer the interested reader to our publications on DSIsrc [28] and DSIbin [23,24]
for more details on the DSI approach and its evaluation. DSI is open source and
available for download from http://www.swt-bamberg.de/dsi.

The present paper also briefly discussed our proof-of-concept back end imple-
mentations, demonstrating how DSI’s analysis results can be used for operation
detection [11], verification condition generation [6], and data structure visualiza-
tion [26]. Regarding additional future uses cases for DSI, we envision to employ
DSI for generating malware signatures so as to detect polymorphic malware
families. This use case is inspired by the virus scanner Laika [10], which detects
structure on pointer connections but does not identify the data structures them-
selves. Finally, we wish to investigate how far DSI’s rich analysis can contribute
to memory leak detection. DSIcore already performs its own memory leak de-
tection, allowing it to exactly record where and when a reference to memory is
lost. By integrating this information into DSI’s data structure visualization, a
powerful tool could emerge that allows software developers to replay the steps
leading to a memory leak and thus to find the leak’s cause.

Acknowledgments. We thank the German Research Foundation (DFG) for their
support of the DSI project (DFG grant LU 1748/4-1), and also Linus Dietz and
Kathrin Welzel who contributed to the project in the context of their bachelor
and master theses.

References

1. libusb 1.0.20. http://www.libusb.info/. Accessed: 8th May 2017.
2. Linux kernel 4.1 cyclic DLL (include/linux/list.h). http://www.kernel.org/.

Accessed: 31 August 2015.
3. Malware statistics by AV-TEST. https://www.av-test.org/en/statistics/

malware/. Accessed: 16th June 2017.
4. Predator/Forester GIT repository. https://github.com/kdudka/predator. Ac-

cessed: 8th May 2017.
5. Aftandilian, E. E., Kelley, S., Gramazio, C., Ricci, N., Su, S. L., and Guyer, S. Z.

Heapviz: Interactive heap visualization for program understanding and debugging.
In SOFTVIS ’10, pp. 53–62. ACM, 2010.

6. Boockmann, J. Automatic generation of data structure annotations for pointer
program verification. Bachelor thesis, U. Bamberg, Germany, October 2016.

7. Braginsky, A. and Petrank, E. Locality-conscious lock-free linked lists. In
ICDCN ’11, vol. 6522 of LNCS, pp. 107–118. Springer, 2011.

8. Caballero, J., Grieco, G., Marron, M., Lin, Z., and Urbina, D. Artiste: Automatic
generation of hybrid data structure signatures from binary code executions. Tech.
Report TR-IMDEA-SW-2012-001, IMDEA Software Institute, Spain, 2012.

9. Caballero, J. and Lin, Z. Type inference on executables. ACM Computing Surveys,
48(4):1–65, 2016.

10. Cozzie, A., Stratton, F., Xue, H., and King, S. Digging for data structures. In
OSDI ’08, pp. 255–266. USENIX Association, 2008.

11. Dietz, L. Multidimensional repetitive pattern discovery for locating data structure
operations. Bachelor thesis, U. Bamberg, Germany, April 2015.



12. Dudka, K., Peringer, P., and Vojnar, T. Byte-precise verification of low-level list
manipulation. In SAS ’13, vol. 7935 of LNCS, pp. 215–237. Springer, 2013.

13. Gansner, E. R. and North, S. C. An open graph visualization system and its ap-
plications to software engineering. Software-Practice and Experience, 30(11):1203–
1233, 2000.

14. Haller, I., Slowinska, A., and Bos, H. Scalable data structure detection and clas-
sification for C/C++ binaries. Empirical Software Engineering, 21(3):778–810,
2016.

15. Hoĺık, L., Lengál, O., Rogalewicz, A., Šimáček, J., and Vojnar, T. Fully automated
shape analysis based on forest automata. In CAV ’13, vol. 8044 of LNCS, pp. 740–
755. Springer, 2013.

16. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., W. Penninckx, W., and Piessens,
F. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In
NFM ’11, vol. 6617 of LNCS, pp. 41–55. Springer, 2011.

17. Jung, C. and Clark, N. DDT: Design and evaluation of a dynamic program analysis
for optimizing data structure usage. In MICRO ’09, pp. 56–66. ACM, 2009.

18. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. Pin: Building customized program analysis tools
with dynamic instrumentation. SIGPLAN Notices, 40(6):190–200, 2005.

19. Marron, M., Sanchez, C., Su, Z., and Fähndrich, M. Abstracting runtime heaps for
program understanding. IEEE Transactions on Software Engineering, 39(6):774–
786, 2013.

20. Mühlberg, J. T., White, D. H., Dodds, M., Lüttgen, G., and Piessens, F. Learning
assertions to verify linked-list programs. In SEMF ’15, pp. 37–52. Springer, 2015.

21. Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. Cil: Intermediate lan-
guage and tools for analysis and transformation of c programs. In CC ’02, vol.
2304 of LNCS, pp. 213–228. Springer, 2002.

22. Raman, E. and August, D. I. Recursive data structure profiling. In Workshop on
Memory System Performance, pp. 5–14. ACM, 2005.

23. Rupprecht, T., Chen, X., Boockmann, J. H., Lüttgen, G., and Bos, H. DSIbin:
Identifying dynamic data structures in C/C++ binaries. In ASE ’17. IEEE, 2017.
Accepted for publication.

24. Rupprecht, T., Chen, X., White, D. H., Mühlberg, J. T., Bos, H., and Lüttgen,
G. POSTER: Identifying dynamic data structures in malware. In CCS ’16, pp.
1772–1774. ACM, 2016.

25. Slowinska, A., Stancescu, T., and Bos, H. Howard: A dynamic excavator for reverse
engineering data structures. In NDSS ’11. The Internet Society, 2011.

26. Welzel, K. Heap visualisation using interactive memory graphs. Bachelor thesis,
U. Bamberg, Germany, March 2016.

27. White, D. H., Rupprecht, T., and Lüttgen, G. dsOli2: Discovery and compre-
hension of interconnected lists in C programs. In 18th Coll. on Programming
Languages and Foundations of Programming (Kolloquium Programmiersprachen,
KPS ’15), 2015. Proceedings available online at http://www.complang.tuwien.

ac.at/kps2015/proceedings.
28. White, D. H., Rupprecht, T., and Lüttgen, G. DSI: An evidence-based approach

to identify dynamic data structures in C programs. In ISSTA ’16, pp. 259–269.
ACM, 2016.


